Control Flow

conditions

*all conditions are Boolean
expressions that must evaluate to
True or False

*Boolean expressions can be
combined using: and, or, not

examples:

< less than

> greater than

= not equal to

<= less than or equal
>= greater than or equal

statements

*any valid Python code can make
up the statement block of a loop or
if-else statement

*loops and if-else statements can
be nested

(ex. the statement block of a while
loop can include another while
loop)

examples:

function calls, print statements,
assignment statements, for/while
loops, if-else statements

if statement structure

if statement

if condition:
statement(s)
else:
*will only execute
if condition evaluates
to True

if-else statement

if condition:
statement(s)

statement(s)

*executes initial

elif statement

if condition:
statement(s)

elif condition:
statement(s)

else:
statement(s)

statement block

if condition is True,
evaluates second
statement block if False

*allows for one step
to check for more
than one condition

control flow example

if color == “green”:
print(“GQO”)

elif color == “yellow”:
print(“SLOW”)

else:
print(“STOP”)

color = “green” — “GO”
color = “yellow” — “SLOW”
color = “red” — “STOP”

while loops

*very similar to for loops; any
for loop can be rewritten as a
while loop

*allow for a loop method to be
used without knowing how
many times to loop in advance

*the condition for a while loop is
far less limited than the
parameters needed for a for
loop

while loop structure

initialization (so condition is true)
while condition:

statement(s)

advance (so loop continues)

limit =10
i=1
while i <= limit:
print(i)
i+=1
—-12345678910

infinite loop

*happens when your while loop
gets stuck because the
condition never becomes false

*to get out of an infinite loop,
press Ctrl + C

*to debug, alter the advance
statement so that the loop
executes appropriately




